Steroids and Related Studies. Part 48. ${ }^{1}$ A Chandonium lodide Analogue possessing an Acetylcholine-like Moiety

By Harkishan Singh,* Tilak Raj Bhardwaj, and Dharam Paul, Department of Pharmaceutical Sciences, Panjab

 University, Chandigarh 160014, India
Abstract

A chandonium iodide analogue containing anacetylcholine-like moiety, 17a-(2-acetoxyethyl)-3 β-pyrrolidino-17a-aza-D-homoandrost-5-ene dimethiodide (1), 17a-(2-hydroxyethyl)-3 β-pyrrolidino-17a-aza-D-homoandrost-5ene dimethiodide (22), and some monoquaternary derivatives have been prepared. Both (1) and (22) possess a marked neuromuscular blocking activity.

It was considered of interest to design an analogue (1) of chandonium iodide (2) ${ }^{2}$ having a moiety corresponding to the neurotransmitter acetylcholine. Notwithstanding the observation ${ }^{3}$ that there is a decrease in potency with increase in the 'onium bulk in (2), preparation of (1) was considered to be a worthwhile project since pancuronium bromide (3), ${ }^{\mathbf{4}}$ an effective neuromuscular blocker, has bulky quaternary groups and contains

(1) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCOMe}$ (2) $\mathrm{R}=\mathrm{Me}$
acetylcholine-like fragments. The high potency and specificity of action of the agent at a neuromuscular receptor site may be associated with the particular molecular geometries and electronic structures of the acetylcholine-like moieties in the molecule.

RESULTS AND DISCUSSION

First, exploratory work was carried out with 4 -azaand $17 \mathrm{a}-\mathrm{aza}$-D-homo-steroids and the respective nitrogens made into part of the acetylcholine-like fragments.

(4) $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{17}$
(5) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}_{1} \mathrm{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{17}$
(6) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCOMe}, \mathrm{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{17}$
(g) $R=H, R^{\prime}=O H$
(10) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{OH}$
(7) $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{17}$
(8) $R=C O M e, R^{\prime}=\mathrm{C}_{8} \mathrm{H}_{17}$
(11) $R=H, R^{\prime}=O H$
(12) $R=C O M e, R^{\prime}=O C O M e$

4-Aza-5 α-cholestane (4), ${ }^{5}$ when refluxed with ethylene chlorohydrin in ethanol in the presence of potassium carbonate, furnished 4-(2-hydroxyethyl)-4-aza-5 α-cholestane (5). The OH function was discernible from the stretching band at $3365 \mathrm{~cm}^{-1}$. In the n.m.r. spectrum
there was a broad multiplet in the range $\delta 2.45-3.35$ (4 H , collapsing to 3 H on deuterium exchange). The multiplet appears to arise from $\mathrm{CH}(5 \alpha)$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$. Another multiplet at $\delta 3.50$ is assigned to $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$. The alcohol (5) was acetylated and the product (6) characterised as the hydrochloride.

Difficulty was experienced in quaternisation of (6) with methyl iodide. However, (5) could be converted
ment of (18) with ethylene chlorohydrin gave the N -(2-hydroxyethyl)-derivative (19). Reaction with pyrrolidine in methanol yielded the enamine (20), $\lambda_{\text {max. }} 275 \mathrm{~nm}$. Sodium borohydride reduction of (20) gave (21), the

3β-configuration being assigned by analogy with similar reductions reported earlier. ${ }^{7,8}$ The quaternary compound (22) was prepared by treating (21) with methyl iodide. Acetylation of (22) yielded the desired product (1).

In anaesthetised cat (1) and (22) were twice as active as chandonium iodide (2) as neuromuscular blockers and produced less vagolytic action than chandonium iodide at neuromuscular blocking doses. ${ }^{9}$

EXPERIMENTAL

U.v. and i.r. spectra were obtained in methanol and for potassium bromide discs, respectively. N.m.r. spectra (60 MHz) were recorded in deuteriochloroform containing tetramethylsilane as internal standard. T.1.c. was carried out on silica gel G (E. Merck) and plates were developed by exposure to iodine vapour, and then ceric sulphate solution (2 g in 100 ml of $10 \% \mathrm{v} / \mathrm{v}$ sulphuric acid), followed by heating at $150^{\circ} \mathrm{C}$. Anhydrous sodium sulphate was employed as drying agent.

4-(2-Hydroxyethyl)-4-aza-5 α-cholestane (5).-Ethylene chlorohydrin (0.5 ml) was added to a refluxing solution of 4 -aza- 5α-cholestane (4$)^{5}(0.25 \mathrm{~g}$) in absolute ethanol (15 $\mathrm{ml})$ containing anhydrous potassium carbonate (0.6 g), and refluxing was continued for 16 h . The reaction mixture was cooled, filtered, and the solvent removed under reduced pressure. The residue was taken up in acetone, filtered, and crystallised to obtain 4 -(2-hydroxyethyl)-4-aza- 5α-cholestane (5) ($0.22 \mathrm{~g}, 78.7 \%$), m.p. $118-120{ }^{\circ} \mathrm{C}$; $v_{\text {max }} 3365 \mathrm{~cm}^{-1}, \delta 0.66(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{s}), 0.94(9 \mathrm{H}, \mathrm{m})$, $2.45-3.35(4 \mathrm{H}, \mathrm{m}$, collapsing to 3 H on deuterium exchange), and $3.50(2 \mathrm{H}, \mathrm{m})$ (Found: C, 80.65; H, 12.25; N, 3.35. $\mathrm{C}_{28} \mathrm{H}_{51}$ NO requires $\mathrm{C}, 80.51 ; \mathrm{H}, 12.31 ; \mathrm{N}, 3.35 \%$).

The Hydrochloride of 4-(2-Acetoxyethyl) $\mathbf{4}$-aza-5 α-cholestane (6).-A mixture of 4 -(2-hydroxyethyl)- 4 -aza- 5α-cholestane (5) $(0.25 \mathrm{~g})$ and acetic anhydride (0.5 ml) was heated on a steam-bath for 2 h . The reaction mixture was cooled, poured into ice-cold water, and made alkaline with 10%
potassium hydroxide solution. The precipitated material was extracted with ether ($3 \times 15 \mathrm{ml}$) and processed to give a residue $(0.22 \mathrm{~g})$. This was taken up in dry ether and alcoholic hydrochloric acid was added to it to acidity. The precipitated material was filtered off and crystallised from acetone to yield 4-(2-acetoxyethyl)-4-aza- 5α-cholestane hydrochloride $(0.23 \mathrm{~g}, 77.5 \%)$, m.p. $255-257{ }^{\circ} \mathrm{C}$; $\nu_{\text {max. }}$ 1753 and $1263 \mathrm{~cm}^{-1}$ (Found: C, 72.05 ; H, 10.5; Cl, 7.3 ; $\mathrm{N}, 3.0 . \mathrm{C}_{30} \mathrm{H}_{54} \mathrm{ClNO}_{2}$ requires $\mathrm{C}, 72.58 ; \mathrm{H}, 10.88 ; \mathrm{Cl}$, 7.15 ; N, 2.82%).

4-(2-Hydroxyethyl)-4-aza-5 α-cholestane Methiodide (7).Methyl iodide (0.1 ml) was added to a boiling solution of 4 -(2-hydroxyethyl)-4-aza-5 α-cholestane (5) (0.25 g) in absolute ethanol (2 ml). The mixture was refluxed for 1 h , cooled, and poured into dry ether. The precipitated material was filtered off and crystallised from acetone to afford 4-(2-hydroxyethyl)-4-aza- 5α-cholestane methiodide (7) $(0.15 \mathrm{~g}, 45.0 \%)$, m.p. $271-273{ }^{\circ} \mathrm{C}$; $v_{\text {max. }} 3320 \mathrm{~cm}^{-1}$ (Found: C, 61.7; H, 9.6; I, 22.5; N, 2.45. $\mathrm{C}_{29} \mathrm{H}_{54} \mathrm{INO}$ requires $\mathrm{C}, 62.25 ; \mathrm{H}, 9.66 ; \mathrm{I}, 22.71 ; \mathrm{N}, 2.50 \%$).

4-(2-Acetoxyethyl)-4-aza-5 α-cholestane Methiodide (8).—A mixture of 4-(2-hydroxyethyl)-4-aza- 5α-cholestane methiodide (7) $(0.18 \mathrm{~g})$ and acetic anhydride (0.3 ml) was heated on a steam-bath for 6 h . The reaction mixture was cooled and poured into dry ether. The precipitated material was filtered off and crystallised from acetone to give 4-(2-acetoxyethyl)-4-aza-5 α-cholestane methiodide (8) (0.07 g , 36.8%), m.p. $242-243{ }^{\circ} \mathrm{C}$; $\nu_{\text {max. }} 1742$ and $1259 \mathrm{~cm}^{-1}$ (Found: C, $61.4 ; \mathrm{H}, 9.35 ; \mathrm{I}, 20.85 ; \mathrm{N}, 2.3 . \mathrm{C}_{31} \mathrm{H}_{56} \mathrm{INO}_{2}$ requires $\mathrm{C}, 61.89 ; \mathrm{H}, 9.31 ; \mathrm{I}, 21.13 ; \mathrm{N}, 2.35 \%$).

4-(2-Hydroxyethyl)-4-aza-5 -androstan-17ß-ol (10).Ethylene chlorohydrin (0.5 ml) was added to a refluxing solution of 4 -aza- 5α-androstan- 17β-ol $(9){ }^{5}(0.5 \mathrm{~g})$ in absolute ethanol (25 ml). Anhydrous potassium carbonate (0.66 g) was added to the reaction mixture and it was refluxed for 12 h . The reaction mixture was cooled, filtered, and the solvent removed under reduced pressure. The residue so obtained was crystallised from acetone to give 4 -(2 -hydroxy-ethyl)-4-aza- 5α-androstan- 17β-ol (10) ($0.46 \mathrm{~g}, 79.3 \%$), m.p. $178-179{ }^{\circ} \mathrm{C}$; $\nu_{\max } 3300 \mathrm{~cm}^{-1}$; $\delta 0.73(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{s})$, $2.50-3.35(4 \mathrm{H}, \mathrm{m}$, collapsing to 3 H on deuterium exchange), and $3.35-3.75(3 \mathrm{H}, \mathrm{m})$ (Found: $\mathrm{C}, 75.0 ; \mathrm{H}$, $11.15 ; \mathrm{N}, 4.35 . \quad \mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{2}$ requires $\mathrm{C}, 74.71 ; \mathrm{H}, 10.97$; N, 4.36\%).
4-(2-Hydroxyethyl)-4-aza-5 α-androstan-17 β-ol Methiodide (11).-Methyl iodide (0.5 ml) was added to a refluxing solution of 4 -(2-hydroxyethyl)-4-aza- 5α-androstan-17 β-ol (10) $(0.5 \mathrm{~g})$ in absolute ethanol $(10 \mathrm{ml})$. The reaction mixture was refluxed for 2 h , concentrated, and cooled. It was poured into dry ether, and the precipitated material filtered off and crystallised from methanol-acetone to yield 4-(2-hydroxyethyl)-4-aza- 5α-androstan-17 β-ol methiodide (11) $(0.55 \mathrm{~g}, 76.3 \%)$, m.p. $232-234{ }^{\circ} \mathrm{C}$; $\nu_{\text {max. }} 3390$ and $3295 \mathrm{~cm}^{-1}$ (Found: C, $54.25 ; \mathrm{H}, 8.7$; I, $27.4 ; \mathrm{N}, 2.9$. $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{INO}_{2}$ requires $\mathrm{C}, 54.42$; $\mathrm{H}, 8.27$; $\mathrm{I}, 27.38 ; \mathrm{N}$, 3.02%).

4-(2-Acetoxyethyl)-4-aza-5 α-androstan-17 $\beta-y l$ Acetate Methiodide (12).-A mixture of 4-(2-hydroxyethyl)-4-aza-5 α -androstan-173-ol methiodide (11) (0.4 g) and acetic anhydride $(1.0 \mathrm{ml})$ was heated on a steam-bath for 2 h . The reaction mixture was cooled and poured into dry ether. The precipitated material was filtered off and crystallised from acetone to give 4-(2-acetoxyethyl)-4-aza-5 α-androstan$17 \beta-\mathrm{yl}$ acetate methiodide (12) ($0.34 \mathrm{~g}, 71.9 \%$), m.p. 230 $232{ }^{\circ} \mathrm{C}$; $\nu_{\text {max. }} 1730$ and $1235 \mathrm{~cm}^{-1}$ (Found: C, 55.1; H,
$7.65 ; \quad \mathrm{I}, 23.6 ; \mathrm{N}, 2.45 . \quad \mathrm{C}_{25} \mathrm{H}_{42} \mathrm{INO}_{4}$ requires C , 54.84 ; H, 7.73; I, 23.18; N, 2.56\%).

17a-(2-Hydroxyethyl)-17a-aza-d-homoandrost-5-en-3ß-ol (14).-Ethylene chlorohydrin (0.8 ml) was added to a refluxing solution of $17 \mathrm{a}-\mathrm{aza}-\mathrm{D}$-homoandrost-5-en- 3β-ol $(13){ }^{6}(0.8 \mathrm{~g})$ in absolute ethanol (25 ml) containing anhydrous potassium carbonate (0.9 g). The reaction mixture was refluxed for 16 h , cooled, filtered, and the solvent removed under reduced pressure. The residue so obtained was crystallised from acetone to give 17a-(2-hydroxyethyl)-17a-aza-d-homoandrost-5-en-3 3 -ol (14) ($0.71 \mathrm{~g}, 68.0 \%$), m.p. $221-223{ }^{\circ} \mathrm{C}$; $\nu_{\text {max. }} 3333 \mathrm{~cm}^{-1}$; $\delta 0.89(3 \mathrm{H}, \mathrm{s}), 0.98$ ($3 \mathrm{H}, \mathrm{s}$), 2.52-3.35 ($4 \mathrm{H}, \mathrm{m}$, collapsing to 2 H on deuterium exchange), $3.35-3.70(3 \mathrm{H}, \mathrm{m})$, and $5.35(1 \mathrm{H}, \mathrm{m})$ (Found: $\mathrm{C}, 75.65 ; \mathrm{H}, 10.65 ; \mathrm{N}, 4.15 . \quad \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{2}$ requires $\mathrm{C}, 75.63$; H, $10.58 ; \mathrm{N}, 4.20 \%)$.

17a-(2-Hydroxyethyl)-17a-aza-D-homoandrost-5-en-3 3 -ol Methiodide (15).-Methyl iodide (0.1 ml) was added to a refluxing solution of 17a-(2-hydroxyethyl)-17a-aza-d-homo-androst-5-en- 3β-ol (14) (0.1 g) in absolute ethanol (1 ml). The reaction mixture was refluxed for 1 h , cooled, and poured into dry ether. The precipitated material was collected and crystallised from acetone to give 17a-(2-hydroxyethyl)17 a -aza-d-homoandrost-5-en-3 3 -ol methiodide (15) (0.07 g , 49.0%), m.p. $240-241{ }^{\circ} \mathrm{C}$; $\nu_{\max } 3540$ and $3360 \mathrm{~cm}^{-1}$ (Found: C, 55.25; H, 7.75; I, 26.2; N, 3.2. $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{INO}_{2}$ requires C, $55.58 ; \mathrm{H}, 8.0 ; \mathrm{I}, 26.73 ; \mathrm{N}, 2.94 \%$).

17a-(2-Acetoxyethyl)-17a-aza-D-homoandrost-5-en-3ß-yl
Acetate Methiodide (16).-A mixture of 17a-(2-hydroxy-ethyl)-17a-aza-D-homoandrost-5-en- 3β-ol methiodide (15) $(0.15 \mathrm{~g})$ and acetic anhydride $(0.3 \mathrm{ml})$ was heated on a steam-bath for 8 h . The reaction mixture was cooled and poured into dry ether. The precipitated material was filtered off and crystallised from acetone to give 17a-(2-acetoxyethyl)-17a-aza-d-homoandrost-5-en-3 β-yl acetate methiodide (16) ($0.1 \mathrm{~g}, 56.6 \%$), m.p. $254-255{ }^{\circ} \mathrm{C}$; $\nu_{\max }$. 1740 and $1243 \mathrm{~cm}^{-1}$ (Found: C, $55.4 ; \mathrm{H}, 7.2$; I, 22.6; $\mathrm{N}, 2.7 . \quad \mathrm{C}_{26} \mathrm{H}_{42} \mathrm{INO}_{4}$ requires $\mathrm{C}, 55.81 ; \mathrm{H}, 7.51$; I, 22.72; N, 2.50 \%) .

17a-(2-Acetoxyethyl)-17a-aza-D-homoandrost-5-en-3ß-yl Acetate (17).-A mixture of 17a-(2-hydroxyethyl)-17a-aza-D-homoandrost-5-en- 3β-ol (14) (0.1 g), pyridine (0.5 ml), and acetic anhydride (0.2 ml) was heated on a steam-bath for 1 h , cooled, and poured into ice-cold water. The resulting solution was made alkaline with 10% potassium hydroxide solution, and the precipitated material was filtered off and washed with water. The residue obtained was crystallised from acetone to afford 17a-(2-acetoxy-ethyl)-17a-aza-D-homoandrost-5-en-3 β-yl acetate (17) (0.06 $\mathrm{g}, 48 \%$), m.p. $124-125^{\circ} \mathrm{C}$; $\nu_{\text {max. }} 1740,1728$, and 1245 $\mathrm{cm}^{-1} ; \delta 0.85(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{s}), 2.04(6 \mathrm{H}, \mathrm{s})$, and 5.38 ($1 \mathrm{H}, \mathrm{m}$) (Found: C, 71.95 ; H, 9.3; N, 3.3. $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{4}$ requires C, 71.89 ; H, 9.41 ; N, 3.36%).

17a-(2-Hydroxyethyl)-17a-aza-D-homoandrost-4-en-3-one (19).-Ethylene chlorohydrin (3.0 ml) was added to a refluxing solution of $17 \mathrm{a}-\mathrm{aza}$-d-homoandrost-4-en-3-one(18) ${ }^{6}$ $(2.9 \mathrm{~g})$ in absolute ethanol (80 ml) containing anhydrous potassium carbonate (4.0 g), and the refluxing continued for 16 h . The reaction mixture was cooled, filtered, and the filtrate evaporated to dryness. The residue so obtained was crystallised from acetone to afford 17a-(2-hydroxy-ethyl)-17a-aza-d-homoandrost-4-en-3-one (19) (2.3 g, $68.8 \%)$, m.p. $188-189{ }^{\circ} \mathrm{C}$; $\lambda_{\text {max. }} 241 \mathrm{~nm}(\log \varepsilon 4.19) ; \nu_{\text {max }}$ 3390,1675 , and $1626 \mathrm{~cm}^{-1}$; $\delta 0.94(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s})$,
2.52-3.35 ($3 \mathrm{H}, \mathrm{m}$, collapsing to 2 H on deuterium exchange), $3.35-3.70(2 \mathrm{H}, \mathrm{m})$, and $5.74(1 \mathrm{H}$, s) (Found: C, $76.7 ; \mathrm{H}, 10.25 ; \mathrm{N}, 4.15 . \quad \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{2}$ requires C, $76.09 ; \mathrm{H}$, 10.03; N, 4.23\%).

17a-(2-Hydroxyethyl)-3-pyrrolidino-17a-aza-D-homo-androsta-3,5-diene (20).-Freshly distilled pyrrolidine (1.0 ml) was added to a boiling solution of 17a-(2-hydroxyethyl)-17a-aza-d-homoandrost-4-en-3-one (19) (1.2 g) in methanol $(20 \mathrm{ml})$. The reaction mixture was refluxed for 30 min , and the yellow needles which crystallised out on cooling were filtered off, washed with methanol, and dried in a vacuum desiccator to yield 17a-(2-hydroxyethyl)-3-pyrrolidino-17a-aza-d-homoandrosta-3,5-diene (20) ($1.0 \mathrm{~g}, 71.8 \%$), m.p. $162-165{ }^{\circ} \mathrm{C}$; $\lambda_{\text {max. }} 275 \mathrm{~nm}(\log \varepsilon 4.39) ; \nu_{\text {max. }} 3356,3175$, 1653 , and $1626 \mathrm{~cm}^{-1}$; $\delta 0.92(3 \mathrm{H}, \mathrm{s}), 0.97(3 \mathrm{H}, \mathrm{s}), 2.55-$ 2.97 ($3 \mathrm{H}, \mathrm{m}$; collapsing to 2 H on deuterium exchange), $2.97-3.35(4 \mathrm{H}, \mathrm{m}), 3.35-3.70(2 \mathrm{H}, \mathrm{m}), 4.81(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, and $5.10(1 \mathrm{H}, \mathrm{m})$ (Found: C, 77.6 ; H, 10.65; N, 7.25 . $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 78.03 ; \mathrm{H}, 10.47 ; \mathrm{N}, 7.29 \%$).

17a-(2-Hydroxyethyl)-3ß-pyrrolidino-17a-aza-D-homo-androst-5-ene (21).-Sodium borohydride (1.0 g) was added to a stirred solution of 17a-(2-hydroxyethyl)-3-pyrrolidino-17a-aza-d-homoandrosta-3,5-diene (20) (1.0 g) in methanol $(25 \mathrm{ml})$ during 4 h . The reaction mixture was stirred for a further 2 h , poured into ice-cold water, and the precipitated material was extracted with chloroform ($3 \times 25 \mathrm{ml}$), and processed. The residue was crystallised from acetone to give 17a-(2-hydroxyethyl)-3 3 -pyrrolidino-17a-aza-d-homo-androst-5-ene (21) ($0.7 \mathrm{~g}, 69.6 \%$), m.p. $152-155{ }^{\circ} \mathrm{C}$; $\nu_{\text {max }}$ $3333 \mathrm{~cm}^{-1}$; $\delta 0.90(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{s}), 2.75-3.35(3 \mathrm{H}$, m , collapsing to 2 H on deuterium exchange), 3.35-3.70 $(2 \mathrm{H}, \mathrm{m})$, and $5.30(1 \mathrm{H}, \mathrm{m})$ (Found: C, 77.2; H, 10.95; $\mathrm{N}, ~ 7.15 . \quad \mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 77.66 ; \mathrm{H}, 10.95 ; \mathrm{N}$, 7.25\%).

17a-(2-Hydroxyethyl)-3ß-pyrrolidino-17a-aza-D-homo-androst-5-ene Dimethiodide (22).-Methyl iodide (0.3 ml) was added to a boiling solution of 17 a -(2-hydroxyethyl)- 3β -pyrrolidino-17a-aza-D-homoandrost-5-ene (21) (0.2 g) in absolute ethanol $(0.5 \mathrm{ml})$. The mixture was refluxed for 1 h , cooled, poured into dry ether, and the precipitated material was filtered off and crystallised from methanol to yield 17a-(2-hydroxyethyl)-3 β-pyrrolidino-17a-aza-D-homo-androst-5-ene dimethiodide (22) ($0.2 \mathrm{~g}, 57.7 \%$), m.p. $280-$ $282{ }^{\circ} \mathrm{C}$; $\nu_{\text {max }} 3226 \mathrm{~cm}^{-1}$ (Found: C, 48.8; H, 7.3; I, 37.5; $\mathrm{N}, 4.15 . \quad \mathrm{C}_{27} \mathrm{H}_{48} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 48.37 ; \mathrm{H}, 7.12 ; \mathrm{I}, 37.84$; N, 4.18%).

17a-(2-Acetoxyethyl)-3ß-pyrrolidino-17a-aza-D-homo-androst-5-ene Dimethiodide (1).-A mixture of 17a-(2-hydroxyethyl)-3 β-pyrrolidino-17a-aza-d-homoandrost-5-ene dimethiodide (22) (0.5 g) and acetic anhydride (2.0 ml) was heated on a steam-bath for 8 h , and the reaction mixture was then cooled and poured into dry ether. The precipitated material was filtered off and crystallised from methanolacetone to give 17a-(2-acetoxyethyl)-3 β-pyrrolidino-17a-aza-D-homoandrost-5-ene dimethiodide (1) ($0.25 \mathrm{~g}, 47.1 \%$), m.p. 245-250 ${ }^{\circ} \mathrm{C}$, $\nu_{\text {max. }} 1742$ and $1247 \mathrm{~cm}^{-1}$ (Found: C, 48.8; H, 7.3; I, 36.0; N, 4.0. $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $48.88 ; \mathrm{H}, 7.07$; I, 35.61 ; N, 3.93%).

We thank the Council of Scientific \& Industrial Research, New Delhi, for financial support and Professor W. B. Whalley, University of London, for some of the spectra and elemental analyses.
[9/027 Received, 8th January, 1979]

REFERENCES
1 Part 47, P. Teerapong, I. G. Marshall, A. L. Harvey, H. Singh, D. Paul, T. R. Bhardwaj, and N. K. Ahuja, J. Pharm. Pharmacol., in the press.
${ }^{2}$ H. Singh and D. Paul, J.C.S. Perkin I, 1974, 1475.
${ }^{3}$ H. Singh, T. R. Bhardwaj, N. K. Ahuja, and D. Paul, J.C.S. Perkin I, 1979, 305.

4 W. R. Buckett, C. L. Hewett, and D. S. Savage, J. Medicin. Chem., 1973, 16, 1116.
${ }^{5}$ C. C. Bolt, Rec. Trav. chim., 1938, 57, 905.
${ }^{\text {B }}$ B. M. Regan and F. N. Hayes, J. Amer. Chem. Soc., 1956, 78, 639.

7 J. Schmitt, J. J. Panouse, A. Hallot, P. J. Cornu, P. Comoy, and H. Pluchet, Bull. Soc. chim. France, 1963, 807
${ }^{8}$ J. A. Marshall and W. S. Johnson, J. Org. Chem., 1963, 28, 421.
${ }^{9}$ I. G. Marshall, A. L. Harvey, H. Singh, T. R. Bhardwaj, and D. Paul, Excerpta Medica, International Congress Series No. 452 (V European Congress of Anaesthesiology, Paris), Abstract No. 438, 1978, p. 243.

